https://i.ancii.com/dujiahaogod/
在机器学习方向,不断积累...
AI 领域最杰出的头脑如何总结 2019 年技术进展,又如何预测 2020 年发展趋势呢?本文介绍了 Soumith Chintala、Celeste Kidd、Jeff Dean 等人的观点。人工智能不是将要改变世界,而是正在改变世界。受访者包括 PyT
毕业季找工作了?如果想应聘机器学习工程师岗位,你可能会遇到技术面试,这是面试官掂量你对技术的真正理解的时候,所以还是相当重要的。近日,JP Tech 发表了一篇文章,介绍了他们面试新人时可能会提出的 12 个面试问题。问题很基础,但却值得一看。问题1:阐述
当今天的太阳升起时,我们正式告别了上一个十年。在这十年中,伴随着计算能力和大数据方面的发展,深度学习已经攻克了许多曾经让我们感到棘手的问题,尤其是计算机视觉和自然语言处理方面。此外,深度学习技术也越来越多地走进我们的生活,变得无处不在。这篇文章总结了过去十
NeurIPS 2019 已经在温哥华接近尾声。作为人工智能和机器学习领域最顶级的盛会之一,本届大会参会总人数已经超过 13000 人,比去年增加了 50%。在大会期间,一场面向 AI 新手的机器学习研讨会「New In ML 2019」也于当地时间 12
美国明年年初将迎来一台新的超级计算机Perlmutter,算力可达100PFLOPS, 该设备以2011年诺奖得主Saul Perlmutter命名,专攻数据模拟和分析。以现在的Top 500超算榜单来看,算力位居第五。来自卡内基梅隆大学的Zachary
高考结束填报志愿是每个考生人生中最重要的事情之一,今年的人工智能专业显然是最时髦的,各大高校将迎来第一批AI本科生。但是报考AI专业该怎么选、有什么注意事项、去哪儿学呢?下面由清华大学计算机系自然语言处理实验室副教授刘知远为广大考生答疑解惑。国内CS/AI
所以,要加深对深度学习的理解,还得超越常规视角。难怪每年有数以百计的机器学习论文贡献给优化的不同领域。当然,专家们现在会问:「泛化理论不正是因为这个原因而被发明为机器学习的「第二条腿」,而优化是「第一条腿」吗?」比如说,这个理论展示了如何给训练目标添加正则
李沐大神《动手学深度学习》中文版发布了!与当前其它深度学习教科书相比,本教科书更加注重交互式的学习体验。新智元值此之际,与人民邮电出版社合作开展免费赠书活动!深度学习在短短几年之内便让世界大吃一惊。这些由深度学习带来的新工具也正产生着广泛的影响。与此同时,
很多公司都在进行着人工智能转型,但如果方向出现错误,一家好公司也可能会跌入深渊。本文所述的公司中有一群非常聪明的人,他们可以写出流行的热文,带来鼓舞人心的 TED 演讲。但总的来说,他们没有任何真实世界里的行业经验。这是一个真实的故事,发生在作者所在的公司
机器学习核方法在模式识别中广泛使用,但当特征空间变大时,核函数计算成本高昂,普通计算机难以负担。量子计算机可以在极大的空间中展开计算,如果将数据映射到只存在量子态的空间中会怎么样呢?在 Nature 今天发表的一篇论文中,IBM 的研究者提出将量子态空间作
选自 themlbook,作者:Andriy Burkov,机器之心编译,参与:张倩、淑婷、晓坤.近日,Gartner 公司机器学习团队负责人、人工智能博士 Andriy Burkov 开源了自己写的机器学习入门书——《The Hundred-Page M
选自 arXiv,作者:Yi-An Ma 等,机器之心编译。对于凸函数而言,局部最优点即全局最优点,这是很多优化方法奏效的重要前提。对于非凸函数,可以使用采样方法,但普遍比优化方法的收敛要慢得多。而在 Michael Jordan 等人的这篇论文中,他们给
机器之心报道,作者:李泽南。10 月 24 日,2018 GeekPwn 国际安全极客大赛在上海展开角逐,在众多极具创意的网络安全破解展示之中,由 FAIR 研究工程师吴育昕、约翰霍普金斯大学在读博士谢慈航组成的团队获得了最为令人瞩目的「CAADCTF」的
在2018 AIIA人工智能开发者大会上,由中国人工智能产业发展联盟开源开放推进组调研并撰写的《深度学习技术选项白皮书》重磅发布。联盟副秘书长张雪丽在宣布这一成果时表示,深度学习框架既是基于深度学习的人工智能体系核心,也是人工智能产业化落地的重要抓手。目前
机器之心整理,参与:思源、李亚洲。在 Github 上,afshinea 贡献了一个备忘录对经典的斯坦福 CS229 课程进行了总结,内容包括监督学习、无监督学习,以及进修所用的概率与统计、线性代数与微积分等知识。据项目介绍,该 repository 旨在
目标检测技术作为计算机视觉的重要方向,被广泛应用于自动驾驶汽车、智能摄像头、人脸识别及大量有价值的应用上。这些系统除了可以对图像中的每个目标进行识别、分类以外,它们还可以通过在该目标周围绘制适当大小的边界框来对其进行定位。本文是目标检测的一般指南,它并没有
对初学者来说,有没有易于上手,使用流行神经网络框架进行教学的深度学习课程?近日,麻省理工学院正式开源了在线介绍性课程「MIT 6.S191:深度学习入门」。该课程包括一系列有关神经网络及其在序列建模、计算机视觉、生成模型和强化学习等方面的基本应用知识。一旦
在即将过去的 2017 年,深度学习技术蓬勃发展,AlphaZero 从「零」开始在多种棋类竞技上快速发展,DeepStack 与 Libratus 在德州扑克中击败人类高手,GAN 衍生出各种变体,语音合成从实验室走向产品,Vicarious 提出全新概
近日,田渊栋等人在 arXiv 上发表了一篇题为《When is a Convolutional Filter Easy To Learn?》的论文,分析了用于学习带有 ReLU 激活函数的卷积滤波器的(随机)梯度下降算法的收敛,整个过程没有依赖输出分布的
可以说机器学习已经成为了改变时代的大事,一时间似乎人人都应该懂一点机器学习。但机器学习涉及到的数学知识和编程能力往往让没有相关经验的人望而却步。YupTechnologies 机器学习专家 Vishal Maini 近日在 Medium 上发布了一个介绍机
0 关注 0 粉丝 0 动态
Copyright © 2013 - 2019 Ancii.com
京ICP备18063983号-5 京公网安备11010802014868号