https://i.ancii.com/fengzhimohan/
fengzhimohan fengzhimohan
Ta还没有发布动态 ...
深度学习是机器学习的重要组成部分,深度学习算法基于神经网络。有几种功能不同的神经网络架构,最适合特定的应用场景。本文介绍一些最知名的架构,尤其是深度学习方面的架构。MLP使用一种称为反向传播的监督式学习技术进行训练。反向传播有助于调整神经元权重,以获得更接
在这篇文章中,我们将仔细研究一个名为GCN的著名图神经网络。首先,我们先直观的了解一下它的工作原理,然后再深入了解它背后的数学原理。许多问题的本质上都是图。在我们的世界里,我们看到很多数据都是图,比如分子、社交网络、论文引用网络。最后通过神经网络返回一个结
GraphSAGE 是 17 年的文章了,但是一直在工业界受到重视,最主要的就是它论文名字中的两个关键词:inductive 和 large graph。今天我们就梳理一下这篇文章的核心思路,和一些容易被忽视的细节。最核心的就是利用图的结构信息,为每个 n
从字面上看,通用近似定理是神经网络起作用的理论基础。简而言之,它声明了一个神经网络,其中具有一个包含足够但有限数量的神经元的隐藏层,可以在激活函数的某些条件下以合理的精度近似任何连续函数。神经网络是否在受过训练的范围之外发生故障并不重要,因为那不是其目标。
参数共享或权重复制是深度学习中经常被忽略的领域。但是了解这个简单的概念有助于更广泛地理解卷积神经网络的内部。卷积神经网络能够使那些通过网络馈送的图像在进行仿射变换时具有不变性。这个特点提供了识别偏移图案、识别倾斜或轻微扭曲的图像的能力。仿射不变性的这些特征
0 关注 0 粉丝 0 动态
Copyright © 2013 - 2019 Ancii.com
京ICP备18063983号-5 京公网安备11010802014868号