https://i.ancii.com/flyfish1986/
计算机视觉、深度学习、机器学习爱好者,欢迎交流!
深度学习的复苏,可以从2012算起,那一年,深度学习网络AlexNet横空出世,在ImageNet竞赛中取得了冠军,到了2016年,Alpha Go的胜利将深度学习推到了我们每一个人的面前。但是,今天脍炙人口的深度学习,其实,从学习方式上来说,和存在了几
众所周知,当今业界性能最强的深度学习模型都会占用巨大的显存空间,很多过去性能算得上强劲的 GPU,现在可能稍显内存不足。在 lambda 最新的一篇显卡横向测评文章中,开发者们探讨了哪些 GPU 可以再不出现内存错误的情况下训练模型。当然,还有这些 GP
以上人脸识别过程,存在一定的问题,当人脸原始数据比较大时,数据库中必然存在比较多的人脸数据,当进行人脸识别时,被识别的人脸与数据库中的数据对比时,必然会消耗大量的时间,对人脸实时识别的速度有较大的影响。
随着AI的广泛应用,深度学习已成为当前AI研究和运用的主流方式。面对海量数据的并行运算,AI对于算力的要求不断提升,对硬件的运算速度及功耗提出了更高的要求。目前,除通用CPU外,作为硬件加速的GPU、NPU、FPGA等一些芯片处理器在深度学习的不同应用中发
Horovod 是 Uber 开源的针对 TensorFlow 的分布式深度学习框架,旨在使分布式深度学习更快速,更易于使用。Horovod 吸取了 Facebook 的 Training ImageNet in 1 Hour 论文与百度 Ring All
先通过一张简单的图,认识工智能、机器学习和深度学习的关系。由图可以看出深度学习是机器学习的一个分支,机器学习又是人工智能的一个分支。直到深度学习技术的出现以及并行计算技术的加持,使得图像识别等复杂问题的准确度得到了大幅提升,一举超越了人类识别的水平。越来越
机器学习和深度学习有什么区别?让我们从本文中寻找答案。除了深度学习和机器学习的比较,我们还将研究它们未来的趋势。通常,为了实现人工智能,我们会使用机器学习。监督机器学习算法进行预测。并且,这些 ML 算法将数据组成簇。机器学习通过旨在模仿人类决策能力的神经
人工智能是当今的热议行业,深度学习是热门中的热门,浪尖上的浪潮,但对传统 IT 从业人员来说,人工智能技术到处都是模型、算法、矢量向量,太晦涩难懂了。所以本文作者写了这篇入门级科普文章,目标是让 IT 从业者能看清读懂深度学习技术的特点,希望读者能够从
深度学习的”深度”, 早几年讨论的挺多的,身边有不同的理解:深度=更大规模的网络,也有认为:深度=更抽象的特征,近年来物理上也有人侧面显示:深度=玻璃相转变,如果后者的观点成立,那么仅仅引入GPU甚至FPGA硬件的目的只是加快, 没有算法的帮助是不会加
现在深度学习这么火,大家都会想着看看能不能用到自己的研究领域里。所以,将深度学习融入到机器人领域的尝试也是有的。我就自己了解的两个方面来简单介绍一下吧。2016年APC中,虽然很多人采用DL进行物体识别,但在物体定位方面都还是使用比较简单、或者传统的算法。
0 关注 0 粉丝 0 动态
Copyright © 2013 - 2019 Ancii.com
京ICP备18063983号-5 京公网安备11010802014868号