https://i.ancii.com/hhhhhjkk/
hhhhhjkk hhhhhjkk
深度学习对算力要求太高,怎么简化计算复杂度呢?北大、华为诺亚方舟实验室等提出完全用加法代替乘法,用 L1 距离代替卷积运算,从而显著减少计算力消耗。近日,北大、华为诺亚方舟实验室等的研究者提出了一个名为 AdderNets 的网络,用于将深度神经网络中,特
用tensorflow,pytorch这类深度学习库来写一个神经网络早就不稀奇了。可是,你知道怎么用python和numpy来优雅地搭一个神经网络嘛?对人们而言,似乎享受这些重要特性带来的便利已经是理所当然的事儿了。所以今天,文摘菌就来手把手教大家搭一个神
在自然语言处理领域,对抗样本的攻击与防御近来受到很多研究者的关注,我们希望构建更稳健的 NLP 模型。在本文中,我们简要讨论了攻防的概念,并介绍了清华大学近日开源的 NLP 对抗样本攻防必读论文列表。自然语言处理方面的研究在近几年取得了惊人的进步,深度神经
一直以来,深度神经网络在图像分类、文本识别等实际问题中发挥重要的作用。但是,考虑到计算资源和时间,深度神经网络架构往往成本很高。此次,谷歌研究人员提出一种自动化神经网络架构的新方法 MorphNet,通过迭代缩放神经网络,节省了资源,提升了性能。深度神经网
2 月 20 日,来自清华大学线路所的刘勇攀副教授团队在美国旧金山举办的第 66 届国际固态电路会议发表了基于循环矩阵压缩方法的通用神经网络加速器芯片 STICKER-T。常见的应用诸如图像识别或机器翻译分别需要卷积神经网络或循环神经网络的支持。因此,通用
机器之心原创,作者:邱陆陆。对于裴健教授来说,过去的一年是极为充实的一年。他在去年 7 月成为新一届 ACM SIGKDD 主席,任期两年,在今年 1 月,他又出任了京东集团副总裁,负责大数据平台与智能供应链事业部。八月,我们来到了京东,与裴健教授聊了聊他
机器之心发布,作者:Dong Su1, Huan Zhang, Hongge Chen , Jinfeng Yi, Pin-Yu Chen, 机器之心编辑部。分类的准确度长期以来都是评价图像分类模型性能的最核心甚至唯一标准。但最近研究表明,即使是充分训练好
选自Uber,作者:Rosanne Liu等,机器之心编译。卷积神经网络拥有权重共享、局部连接和平移等变性等非常优秀的属性,使其在多种视觉任务上取得了极大成功。Uber 在这项研究中揭示出问题的本质就在于卷积的平移等变性,并据此提出了对应的解决方案 Coo
选自Sciencedaily,作者:Olivier Wyart,参与:张倩、王淑婷。近日,来自加州理工学院的研究人员开发出一种由 DNA 制成的新型人工神经网络。该项研究中,研究者用了 36 个手写数字 6 和 7 作为测试例子,结果表明这种新型神经网络能
本文介绍了 CVPR 2018 的一篇 Poster 论文《Learning a Single Convolutional Super-Resolution Network for Multiple Degradations》。近年来,深度卷积神经网络方法
怎样才能得到经过初始训练后就可以利用经验持续快速高效学习的智能体呢?Uber AI 近日研究表明,如同深度神经网络的连接权重,神经可塑性也可以通过梯度下降来优化。在模式记忆、图像重建和强化学习任务上,该方法得到了超越传统非可塑网络的表现,表明可微可塑性有望
最近,向量场被用于分析生成对抗网络优化问题,并在对 GAN 局限性的洞察和理解,以及扩展方法上取得了相当不错的结果。本论文提出了一种新的架构,将向量场作为激活函数而获得强大的非线性属性。以二值交叉熵作为损失函数,作者通过随机梯度下降方法优化向量场,并在小数
在这位工程师通过训练一个神经网络成功创造出浪漫信息后,单身狗程序员们你们得到了什么灵感?如今的人工智能技术可以轻易识别出照片当中的汪们,把我们的语音转换成电子邮件,还能被改造成一个贴心的机器男友或女友陪在你的身边。研究工程师 Janelle Shane 训
用于「欺骗」神经网络的对抗样本是近期计算机视觉,以及机器学习领域的热门研究方向。只有了解对抗样本,我们才能找到构建稳固机器学习算法的思路。本文中,UC Berkeley 的研究者们展示了两种对抗样本的制作方法,并对其背后的原理进行了解读。也许有一天,这真的
不久前,Coursera 上放出了吴恩达 deeplearning.ai 的第四门课程《卷积神经网络》。本文是加拿大国家银行首席分析师 Ryan Shrott 在完成该课程后所写的学习心得,有助于大家直观地了解、学习计算机视觉。我最近在 Coursera
用于识别图片中物体的神经网络可以被精心设计的对抗样本欺骗,这个问题目前在计算机视觉领域备受关注。此前,生成对抗样本通常需要向原图片中加入一些特定的噪点。然而最近,日本九州大学的 Su Jiawei 等人发表的研究证明:修改图片中的一个像素也可以让深度神经网
在本文中,作者对包括 Relu、Sigmoid 在内的 26 种激活函数做了可视化,并附上了神经网络的相关属性,为大家了解激活函数提供了很好的资源。在神经网络中,激活函数决定来自给定输入集的节点的输出,其中非线性激活函数允许网络复制复杂的非线性行为。此外,
大数据让传统计算机架构捉襟见肘,真实忆阻器的发现改变了这一局面。其元件特性适合模拟神经元突触的部分运作,使得电脑神经网络制作上更能接近人脑。目前,一些科技巨头、创业和研究机构已在探索利用忆阻器强化计算机学习能力甚至取代普通晶体管计算机的路径。部分原因在于大
在过去的五年中,深度神经网络已经解决了许多计算困难的问题,特别是计算机视觉。因为深度神经网络需要大量的计算力来训练模型,所以我们经常使用多块 GPU 或云端服务器进行分布式地训练。实际上,在深度神经网络模型经过训练后,它只需要相对较少的计算资源就能执行预测
索尼昨天宣布开源了自己的神经网络库 NNabla,其中包含用于深度学习系统的 Python API 与用于嵌入式设备的 C++API。彭博社也表示索尼正在加入谷歌、Facebook 和亚马逊等巨头的人工智能开发竞争。神经网络是深度学习模型的核心,后者自 2
0 关注 0 粉丝 0 动态
Copyright © 2013 - 2019 Ancii.com
京ICP备18063983号-5 京公网安备11010802014868号